EQUAÇÃO DE GRACELI.. PARA INTERAÇÕES DE ONDAS E INTERAÇÕES DAS FORÇAS FUNDAMENTAIS.


/

G* =  = [          ] ω   / T]  c [    [x,t] ]  = 

1 / G* =  = [          ] ω   / T]  c [    [x,t] ] [-1] = 


G* = = OPERADOR DE GRACELI = Em mecânica quântica, o OPERADOR DE GRACELI [ G* =]  é um operador cujo observável corresponde à  ENERGIA TOTAL DO SISTEMA , TODAS AS INTERAÇÕES INCLUINDO TODAS AS INTERAÇÕES DAS FORÇAS FUNDAMENTAIS [AS QUATRO FORÇAS] [ELETROMAGNÉTICA, FORTE, FRACA E GRAVITACIONAL], INTERAÇÕES SPINS-ÓRBITAS, ESTRUTURRA ELETRÔNICA DOS ELEMENTOS QUÍMICOS, TRANSFORMAÇÕES, SISTEMAS DE ONDAS QUÂNTICAS, MOMENTUM MAGNÉTICO de cada elemento químico e partícula, NÍVEIS DE ENERGIA , número quântico , e o  sistema GENERALIZADO GRACELI.


COMO TAMBÉM ESTÁ RELACIONADO A TODO SISTEMA CATEGORIAL GRACELI, TENSORIAL GRACELI DIMENSIONAL DE GRACELI..



O coeficiente piroelétrico pode ser descrito como a variação do vetor de polarização espontânea com a temperatura[3]:

/

G* =  = [          ] ω   / T]  c [    [x,t] ]  = 

em que pi (Cm-2K-1) é o vetor do coeficiente piroelétrico.



A piezoelectricidade é uma combinação de efeitos do comportamento elétrico do material:[3]

/

G* =  = [          ] ω   / T]  c [    [x,t] ]  = 

Nessa equação, D é o deslocamento elétricoε é a permissividade elétricaE representa o campo elétrico, 'e' representa a constante de stress e S é a tensão longitudinal aplicada.

Quando a aplicação de uma força F, o centro de equilíbrio das cargas positivas e negativas é deslocado, causando a polarização do material, e o consequente deslocamento de corrente.

Similarmente, considerações para o caso quando um campo elétrico E é aplicado mostram que um termo referente a stress adicional, -eE, aparece. Tem-se então a Lei de Hooke, T = cS:

/

G* =  = [          ] ω   / T]  c [    [x,t] ]  = 

Se as cargas de moléculas positivas e negativas possuem magnitudes diferentes, há uma polarização espontânea. Se uma molécula possui um momento de dipolo, este material exibe uma polarização iônica. Já no caso onde há somente um tipo de elemento, mas este é polarizável, temos o efeito de polarização eletrônica.

A piezoeletricidade apresenta relação entre propriedades elétricas (E, D) e mecânicas (S, T). O modelo de um sólido piezoelétrico apresenta quatro diferentes relações entre variáveis. Assumimos que  e . Assim, temos

/

G* =  = [          ] ω   / T]  c [    [x,t] ]  = 

/

G* =  = [          ] ω   / T]  c [    [x,t] ]  = 

onde todos os outros efeitos, tais como magnéticos e térmicos, assim como termos não-lineares, são ignorados.

Considerando o caso onde ao campo elétrico é aplicado sobre o material piezoelétrico (ao se colocar um material piezoelétrico num campo elétrico externo, as cargas elétricas da rede cristalina interagem com o mesmo e produzem tensões mecânicas), os segundos termos das equações acima enunciam o stress ou a tensão elétrica no material. Se o material não está confinado mecanicamente, a tensão será uma força de reação a força imposta pelo stress. Desta forma, a tensão altera a relação D e E, e assim a medição das propriedades elétricas dependentes das propriedades mecânicas. Do mesmo modo, uma tensão elétrica alterará a medição de propriedades mecânicas dependentes das propriedades elétricas. Em ambos os casos, isso demonstra a essência do acoplamento piezoelétrico. Para uma análise mais detalhada, deve-se comparar diferentes materiais piezoelétricos para identificar sua performance. Fatores como a eficiência do acoplamento a vibrações mecânicas, vibrações com campos elétricos externos, direção de aplicação do campo elétrico externo e demais, são resultados a serem considerados.

Num material piezoelétrico também interessam os seguintes coeficientes:

  • Coeficiente de acoplamento eletro-mecânico:

 é definido como a variação de energia mecânica convertida em carga pela energia mecânica aplicada ao cristal, ou de modo similar, a energia elétrica convertida em energia mecânica pela energia elétrica aplicada ao cristal.

  • Coeficiente Dielétrica: esta grandeza relaciona a quantidade de carga que uma das faces do cristal pode armazenar em relação à carga total armazenada, e que pode ser dissipada como corrente real. Existem duas constantes dielétricas: uma é a constante para o cristal livre e outra para o cristal bloqueado:


/

G* =  = [          ] ω   / T]  c [    [x,t] ]  = 

Comentários

Postagens mais visitadas deste blog